3.101 \(\int \frac {a+b \text {csch}^{-1}(c x)}{x (d+e x^2)} \, dx\)

Optimal. Leaf size=425 \[ -\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{2 d}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {e-c^2 d}}+1\right )}{2 d}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e-c^2 d}+\sqrt {e}}\right )}{2 d}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e-c^2 d}+\sqrt {e}}+1\right )}{2 d}+\frac {\left (a+b \text {csch}^{-1}(c x)\right )^2}{2 b d}-\frac {b \text {Li}_2\left (-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{2 d}-\frac {b \text {Li}_2\left (\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{2 d}-\frac {b \text {Li}_2\left (-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {e-c^2 d}}\right )}{2 d}-\frac {b \text {Li}_2\left (\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {e-c^2 d}}\right )}{2 d} \]

[Out]

1/2*(a+b*arccsch(c*x))^2/b/d-1/2*(a+b*arccsch(c*x))*ln(1-c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(-c
^2*d+e)^(1/2)))/d-1/2*(a+b*arccsch(c*x))*ln(1+c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(-c^2*d+e)^(1/
2)))/d-1/2*(a+b*arccsch(c*x))*ln(1-c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(-c^2*d+e)^(1/2)))/d-1/2*
(a+b*arccsch(c*x))*ln(1+c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(-c^2*d+e)^(1/2)))/d-1/2*b*polylog(2
,-c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)-(-c^2*d+e)^(1/2)))/d-1/2*b*polylog(2,c*(1/c/x+(1+1/c^2/x^2
)^(1/2))*(-d)^(1/2)/(e^(1/2)-(-c^2*d+e)^(1/2)))/d-1/2*b*polylog(2,-c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e
^(1/2)+(-c^2*d+e)^(1/2)))/d-1/2*b*polylog(2,c*(1/c/x+(1+1/c^2/x^2)^(1/2))*(-d)^(1/2)/(e^(1/2)+(-c^2*d+e)^(1/2)
))/d

________________________________________________________________________________________

Rubi [A]  time = 0.86, antiderivative size = 425, normalized size of antiderivative = 1.00, number of steps used = 19, number of rules used = 7, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6304, 5791, 5799, 5561, 2190, 2279, 2391} \[ -\frac {b \text {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{2 d}-\frac {b \text {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{2 d}-\frac {b \text {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e-c^2 d}+\sqrt {e}}\right )}{2 d}-\frac {b \text {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e-c^2 d}+\sqrt {e}}\right )}{2 d}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {e-c^2 d}}\right )}{2 d}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {e-c^2 d}}+1\right )}{2 d}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e-c^2 d}+\sqrt {e}}\right )}{2 d}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e-c^2 d}+\sqrt {e}}+1\right )}{2 d}+\frac {\left (a+b \text {csch}^{-1}(c x)\right )^2}{2 b d} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCsch[c*x])/(x*(d + e*x^2)),x]

[Out]

(a + b*ArcCsch[c*x])^2/(2*b*d) - ((a + b*ArcCsch[c*x])*Log[1 - (c*Sqrt[-d]*E^ArcCsch[c*x])/(Sqrt[e] - Sqrt[-(c
^2*d) + e])])/(2*d) - ((a + b*ArcCsch[c*x])*Log[1 + (c*Sqrt[-d]*E^ArcCsch[c*x])/(Sqrt[e] - Sqrt[-(c^2*d) + e])
])/(2*d) - ((a + b*ArcCsch[c*x])*Log[1 - (c*Sqrt[-d]*E^ArcCsch[c*x])/(Sqrt[e] + Sqrt[-(c^2*d) + e])])/(2*d) -
((a + b*ArcCsch[c*x])*Log[1 + (c*Sqrt[-d]*E^ArcCsch[c*x])/(Sqrt[e] + Sqrt[-(c^2*d) + e])])/(2*d) - (b*PolyLog[
2, -((c*Sqrt[-d]*E^ArcCsch[c*x])/(Sqrt[e] - Sqrt[-(c^2*d) + e]))])/(2*d) - (b*PolyLog[2, (c*Sqrt[-d]*E^ArcCsch
[c*x])/(Sqrt[e] - Sqrt[-(c^2*d) + e])])/(2*d) - (b*PolyLog[2, -((c*Sqrt[-d]*E^ArcCsch[c*x])/(Sqrt[e] + Sqrt[-(
c^2*d) + e]))])/(2*d) - (b*PolyLog[2, (c*Sqrt[-d]*E^ArcCsch[c*x])/(Sqrt[e] + Sqrt[-(c^2*d) + e])])/(2*d)

Rule 2190

Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
 (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m*Log[1 + (b*(F^(g*(e + f*x)))^n)/a])/(b*f*g*n*Log[F]), x]
 - Dist[(d*m)/(b*f*g*n*Log[F]), Int[(c + d*x)^(m - 1)*Log[1 + (b*(F^(g*(e + f*x)))^n)/a], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]

Rule 2279

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2391

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> -Simp[PolyLog[2, -(c*e*x^n)]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 5561

Int[(Cosh[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sinh[(c_.) + (d_.)*(x_)]), x_Symbol] :
> -Simp[(e + f*x)^(m + 1)/(b*f*(m + 1)), x] + (Int[((e + f*x)^m*E^(c + d*x))/(a - Rt[a^2 + b^2, 2] + b*E^(c +
d*x)), x] + Int[((e + f*x)^m*E^(c + d*x))/(a + Rt[a^2 + b^2, 2] + b*E^(c + d*x)), x]) /; FreeQ[{a, b, c, d, e,
 f}, x] && IGtQ[m, 0] && NeQ[a^2 + b^2, 0]

Rule 5791

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int
[ExpandIntegrand[(a + b*ArcSinh[c*x])^n, (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
e, c^2*d] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]

Rule 5799

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/((d_.) + (e_.)*(x_)), x_Symbol] :> Subst[Int[((a + b*x)^n*Cosh[x
])/(c*d + e*Sinh[x]), x], x, ArcSinh[c*x]] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[n, 0]

Rule 6304

Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> -Subst[Int
[((e + d*x^2)^p*(a + b*ArcSinh[x/c])^n)/x^(m + 2*(p + 1)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ
[n, 0] && IntegersQ[m, p]

Rubi steps

\begin {align*} \int \frac {a+b \text {csch}^{-1}(c x)}{x \left (d+e x^2\right )} \, dx &=-\operatorname {Subst}\left (\int \frac {x \left (a+b \sinh ^{-1}\left (\frac {x}{c}\right )\right )}{e+d x^2} \, dx,x,\frac {1}{x}\right )\\ &=-\operatorname {Subst}\left (\int \left (-\frac {\sqrt {-d} \left (a+b \sinh ^{-1}\left (\frac {x}{c}\right )\right )}{2 d \left (\sqrt {e}-\sqrt {-d} x\right )}+\frac {\sqrt {-d} \left (a+b \sinh ^{-1}\left (\frac {x}{c}\right )\right )}{2 d \left (\sqrt {e}+\sqrt {-d} x\right )}\right ) \, dx,x,\frac {1}{x}\right )\\ &=-\frac {\operatorname {Subst}\left (\int \frac {a+b \sinh ^{-1}\left (\frac {x}{c}\right )}{\sqrt {e}-\sqrt {-d} x} \, dx,x,\frac {1}{x}\right )}{2 \sqrt {-d}}+\frac {\operatorname {Subst}\left (\int \frac {a+b \sinh ^{-1}\left (\frac {x}{c}\right )}{\sqrt {e}+\sqrt {-d} x} \, dx,x,\frac {1}{x}\right )}{2 \sqrt {-d}}\\ &=-\frac {\operatorname {Subst}\left (\int \frac {(a+b x) \cosh (x)}{\frac {\sqrt {e}}{c}-\sqrt {-d} \sinh (x)} \, dx,x,\text {csch}^{-1}(c x)\right )}{2 \sqrt {-d}}+\frac {\operatorname {Subst}\left (\int \frac {(a+b x) \cosh (x)}{\frac {\sqrt {e}}{c}+\sqrt {-d} \sinh (x)} \, dx,x,\text {csch}^{-1}(c x)\right )}{2 \sqrt {-d}}\\ &=\frac {\left (a+b \text {csch}^{-1}(c x)\right )^2}{2 b d}-\frac {\operatorname {Subst}\left (\int \frac {e^x (a+b x)}{\frac {\sqrt {e}}{c}-\frac {\sqrt {-c^2 d+e}}{c}-\sqrt {-d} e^x} \, dx,x,\text {csch}^{-1}(c x)\right )}{2 \sqrt {-d}}-\frac {\operatorname {Subst}\left (\int \frac {e^x (a+b x)}{\frac {\sqrt {e}}{c}+\frac {\sqrt {-c^2 d+e}}{c}-\sqrt {-d} e^x} \, dx,x,\text {csch}^{-1}(c x)\right )}{2 \sqrt {-d}}+\frac {\operatorname {Subst}\left (\int \frac {e^x (a+b x)}{\frac {\sqrt {e}}{c}-\frac {\sqrt {-c^2 d+e}}{c}+\sqrt {-d} e^x} \, dx,x,\text {csch}^{-1}(c x)\right )}{2 \sqrt {-d}}+\frac {\operatorname {Subst}\left (\int \frac {e^x (a+b x)}{\frac {\sqrt {e}}{c}+\frac {\sqrt {-c^2 d+e}}{c}+\sqrt {-d} e^x} \, dx,x,\text {csch}^{-1}(c x)\right )}{2 \sqrt {-d}}\\ &=\frac {\left (a+b \text {csch}^{-1}(c x)\right )^2}{2 b d}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 d}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 d}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 d}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 d}+\frac {b \operatorname {Subst}\left (\int \log \left (1-\frac {\sqrt {-d} e^x}{\frac {\sqrt {e}}{c}-\frac {\sqrt {-c^2 d+e}}{c}}\right ) \, dx,x,\text {csch}^{-1}(c x)\right )}{2 d}+\frac {b \operatorname {Subst}\left (\int \log \left (1+\frac {\sqrt {-d} e^x}{\frac {\sqrt {e}}{c}-\frac {\sqrt {-c^2 d+e}}{c}}\right ) \, dx,x,\text {csch}^{-1}(c x)\right )}{2 d}+\frac {b \operatorname {Subst}\left (\int \log \left (1-\frac {\sqrt {-d} e^x}{\frac {\sqrt {e}}{c}+\frac {\sqrt {-c^2 d+e}}{c}}\right ) \, dx,x,\text {csch}^{-1}(c x)\right )}{2 d}+\frac {b \operatorname {Subst}\left (\int \log \left (1+\frac {\sqrt {-d} e^x}{\frac {\sqrt {e}}{c}+\frac {\sqrt {-c^2 d+e}}{c}}\right ) \, dx,x,\text {csch}^{-1}(c x)\right )}{2 d}\\ &=\frac {\left (a+b \text {csch}^{-1}(c x)\right )^2}{2 b d}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 d}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 d}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 d}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 d}+\frac {b \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {\sqrt {-d} x}{\frac {\sqrt {e}}{c}-\frac {\sqrt {-c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{\text {csch}^{-1}(c x)}\right )}{2 d}+\frac {b \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {\sqrt {-d} x}{\frac {\sqrt {e}}{c}-\frac {\sqrt {-c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{\text {csch}^{-1}(c x)}\right )}{2 d}+\frac {b \operatorname {Subst}\left (\int \frac {\log \left (1-\frac {\sqrt {-d} x}{\frac {\sqrt {e}}{c}+\frac {\sqrt {-c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{\text {csch}^{-1}(c x)}\right )}{2 d}+\frac {b \operatorname {Subst}\left (\int \frac {\log \left (1+\frac {\sqrt {-d} x}{\frac {\sqrt {e}}{c}+\frac {\sqrt {-c^2 d+e}}{c}}\right )}{x} \, dx,x,e^{\text {csch}^{-1}(c x)}\right )}{2 d}\\ &=\frac {\left (a+b \text {csch}^{-1}(c x)\right )^2}{2 b d}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 d}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 d}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 d}-\frac {\left (a+b \text {csch}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 d}-\frac {b \text {Li}_2\left (-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 d}-\frac {b \text {Li}_2\left (\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}-\sqrt {-c^2 d+e}}\right )}{2 d}-\frac {b \text {Li}_2\left (-\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 d}-\frac {b \text {Li}_2\left (\frac {c \sqrt {-d} e^{\text {csch}^{-1}(c x)}}{\sqrt {e}+\sqrt {-c^2 d+e}}\right )}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.98, size = 387, normalized size = 0.91 \[ \frac {-2 a \log \left (d+e x^2\right )+4 a \log (x)+b \left (\text {Li}_2\left (\frac {\left (d c^2-2 e+2 \sqrt {e \left (e-c^2 d\right )}\right ) e^{-2 \text {csch}^{-1}(c x)}}{c^2 d}\right )+\text {Li}_2\left (\frac {\left (c^2 d-2 \left (e+\sqrt {e \left (e-c^2 d\right )}\right )\right ) e^{-2 \text {csch}^{-1}(c x)}}{c^2 d}\right )-2 \left (i \sin ^{-1}\left (\sqrt {\frac {e}{c^2 d}}\right ) \left (2 \tanh ^{-1}\left (\frac {\sqrt {e \left (e-c^2 d\right )}}{c e x \sqrt {\frac {1}{c^2 x^2}+1}}\right )-\log \left (\frac {e^{-2 \text {csch}^{-1}(c x)} \left (-2 \sqrt {e \left (e-c^2 d\right )}+c^2 d \left (e^{2 \text {csch}^{-1}(c x)}-1\right )+2 e\right )}{c^2 d}\right )+\log \left (\frac {e^{-2 \text {csch}^{-1}(c x)} \left (2 \left (\sqrt {e \left (e-c^2 d\right )}+e\right )+c^2 d \left (e^{2 \text {csch}^{-1}(c x)}-1\right )\right )}{c^2 d}\right )\right )+\text {csch}^{-1}(c x) \left (\log \left (\frac {e^{-2 \text {csch}^{-1}(c x)} \left (-2 \sqrt {e \left (e-c^2 d\right )}+c^2 d \left (e^{2 \text {csch}^{-1}(c x)}-1\right )+2 e\right )}{c^2 d}\right )+\log \left (\frac {e^{-2 \text {csch}^{-1}(c x)} \left (2 \left (\sqrt {e \left (e-c^2 d\right )}+e\right )+c^2 d \left (e^{2 \text {csch}^{-1}(c x)}-1\right )\right )}{c^2 d}\right )\right )+\text {csch}^{-1}(c x)^2\right )\right )}{4 d} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcCsch[c*x])/(x*(d + e*x^2)),x]

[Out]

(4*a*Log[x] - 2*a*Log[d + e*x^2] + b*(-2*(ArcCsch[c*x]^2 + I*ArcSin[Sqrt[e/(c^2*d)]]*(2*ArcTanh[Sqrt[e*(-(c^2*
d) + e)]/(c*e*Sqrt[1 + 1/(c^2*x^2)]*x)] - Log[(2*e - 2*Sqrt[e*(-(c^2*d) + e)] + c^2*d*(-1 + E^(2*ArcCsch[c*x])
))/(c^2*d*E^(2*ArcCsch[c*x]))] + Log[(2*(e + Sqrt[e*(-(c^2*d) + e)]) + c^2*d*(-1 + E^(2*ArcCsch[c*x])))/(c^2*d
*E^(2*ArcCsch[c*x]))]) + ArcCsch[c*x]*(Log[(2*e - 2*Sqrt[e*(-(c^2*d) + e)] + c^2*d*(-1 + E^(2*ArcCsch[c*x])))/
(c^2*d*E^(2*ArcCsch[c*x]))] + Log[(2*(e + Sqrt[e*(-(c^2*d) + e)]) + c^2*d*(-1 + E^(2*ArcCsch[c*x])))/(c^2*d*E^
(2*ArcCsch[c*x]))])) + PolyLog[2, (c^2*d - 2*e + 2*Sqrt[e*(-(c^2*d) + e)])/(c^2*d*E^(2*ArcCsch[c*x]))] + PolyL
og[2, (c^2*d - 2*(e + Sqrt[e*(-(c^2*d) + e)]))/(c^2*d*E^(2*ArcCsch[c*x]))]))/(4*d)

________________________________________________________________________________________

fricas [F]  time = 0.71, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {b \operatorname {arcsch}\left (c x\right ) + a}{e x^{3} + d x}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/x/(e*x^2+d),x, algorithm="fricas")

[Out]

integral((b*arccsch(c*x) + a)/(e*x^3 + d*x), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {b \operatorname {arcsch}\left (c x\right ) + a}{{\left (e x^{2} + d\right )} x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/x/(e*x^2+d),x, algorithm="giac")

[Out]

integrate((b*arccsch(c*x) + a)/((e*x^2 + d)*x), x)

________________________________________________________________________________________

maple [F]  time = 0.44, size = 0, normalized size = 0.00 \[ \int \frac {a +b \,\mathrm {arccsch}\left (c x \right )}{x \left (e \,x^{2}+d \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccsch(c*x))/x/(e*x^2+d),x)

[Out]

int((a+b*arccsch(c*x))/x/(e*x^2+d),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {1}{2} \, a {\left (\frac {\log \left (e x^{2} + d\right )}{d} - \frac {2 \, \log \relax (x)}{d}\right )} + b \int \frac {\log \left (\sqrt {\frac {1}{c^{2} x^{2}} + 1} + \frac {1}{c x}\right )}{e x^{3} + d x}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccsch(c*x))/x/(e*x^2+d),x, algorithm="maxima")

[Out]

-1/2*a*(log(e*x^2 + d)/d - 2*log(x)/d) + b*integrate(log(sqrt(1/(c^2*x^2) + 1) + 1/(c*x))/(e*x^3 + d*x), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {a+b\,\mathrm {asinh}\left (\frac {1}{c\,x}\right )}{x\,\left (e\,x^2+d\right )} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asinh(1/(c*x)))/(x*(d + e*x^2)),x)

[Out]

int((a + b*asinh(1/(c*x)))/(x*(d + e*x^2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {a + b \operatorname {acsch}{\left (c x \right )}}{x \left (d + e x^{2}\right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acsch(c*x))/x/(e*x**2+d),x)

[Out]

Integral((a + b*acsch(c*x))/(x*(d + e*x**2)), x)

________________________________________________________________________________________